
GraphQL
Concepts & Challenges

- I’m Robert Mosolgo 
- Work from home Ruby developer  
- From Charlottesville VA 
- For GitHub

API

Rails

WHY

- You have your Rails app, why bother with an API?

- You have clients. Native app team, fancy front end, integrators

- Do stuff, render views (even tasks have some kind of output)

APIs

GET /decks/100.json  
 
{  
 "deck": {  
 # ...  
 }  
}

- Traditionally, Resource-based REST API

- Endpoints with “representations” of objects

- This is great, people start fetching your data and doing weird stuff with it

APIs

- As a server developer, this is bad news.

- Someone will find your API and hammer it

- They’ll send you bad inputs

APIs
GET /decks/100.json
GET /favorites.json

GET /cards/5.json
GET /expansions/43.json
 
GET /cards/12.json
GET /expansions/39.json
 
GET /cards/26.json
GET /cards/35.json

- The good news is, it’s also a pain for your clients

- Rendering a useful view requires a lot of different kinds of data

- This is GraphiQL, an in-browser IDE for GraphQL queries

- Simple query

- query keyword

- matching response shape

- Let’s make a query to render that UI

- nested resources

- We have the query for rendering a view, but the 2 is hardcoded

- Extract it to a variable, give the query a name

- Now the query is like a function

- Extracting logic is good

- How about fragment, you can share bits of queries between views

REST vs GraphQL?

GET /decks/100.json  
??  

type Deck {
 name: String!
 id: ID!  
 rating: Int  
 cards: [Card!]!
}

POST /graphql  

How is GraphQL Different from REST? 
- Structure is stable and client defined 
- Strongly-typed attributes prevent accidents

REST vs GraphQL?

GET /decks/100.json
GET /cards/5.json  
GET /cards/12.json  
GET /cards/26.json  
GET /cards/35.json

{
 deck(id: 100) {
 name
 cards {
 name  
 colors  
 }
 }
}

How is GraphQL Different from REST? 
- Fewer roundtrips, simpler client code 
- Resources are structured according to client’s needs

REST vs GraphQL?
query {
 user(login: “rmosolgo”) {  
 decks(first: 10000) {  
 cards(first: 10000) {
 artist {
 name  
 }  
 # ...
 }  
 }  
 }  
}

How is GraphQL Different from REST? 
- Worse for servers 
- Client can make insane requests: high volume, high complexity

SQL vs GraphQL?

How is GraphQL different from opening up your SQL server? 
- Runs Ruby code 
- Storage-agnostic 
- Application logic, access controll

GraphQL Ruby
Types::CardType = GraphQL::ObjectType.define do
 name "Card"
 description "A printed card which may be played"

end

 field :id, types.ID
 field :name, types.String
 field :expansion, Types::ExpansionType
 field :image_path, types.String do
 resolve ->(card, args, ctx) {
 card.latest_printing.image_path
 }
 end

Example Ruby code

- Type, docs built in

- Strongly-typed fields

- Relationship between objects

- Fields call methods, or custom logic

We’re using GraphQL for a few things:  
- Rails views fetch data with GraphQL

- GraphQL API  
- Why?  
 - Client experience 
 - Centralization: maintenance, monitoring, improvements  

GraphQL 🔐

- Let’s talk about a few API-related topics

- You might be familiar with these categories from resource-based API development

- I hope we can bridge the gap

Authentication
class GraphqlController < ApplicationController
 before_action :authorize

 def execute

 # run GraphQL query

 render json: result
 end
end

 result = CardsSchema.execute( 
 params[:query],  
 context: context  
)

 context = { current_user: current_user }

Authentication 
- GraphQL over HTTP 
- User identity is the same  
- Use GraphQL context, Sam introduced this

Authorization

field :search, types[Types::CardType] do
 argument :term, types.String
 resolve ->(obj, args, ctx) {

 }
end

 current_user = ctx[:current_user]
 current_user.cards.search(term: args[:term])

Authorization

- You’ve got the user, now, give them permitted data

- Scope your DB loads

- You probably do this in controller actions already

- Check at the last minute

- HackerOne’s gem

Authorization

def call_with_auth(obj, args, ctx)

 result = @field.call(obj, args, ctx)

 result
end

https://github.com/Hacker0x01/protected_attribute

 if !authorized?(ctx[:current_user], result)
 raise "Authorization failure!"
 end

Authorization

- Check at the last minute

- HackerOne’s gem

Rate Limiting

http://graphql-ruby.org/queries/complexity_and_depth

query {
 deck(id: 100) {
 name
 cards(first: 10) {
 name
 colors  
 artist {
 name  
 }
 }
 }
}

← 1 deck

← 10 cards

← 1 artist * 10 cards

21 nodes

Rate Limiting  
- Clients can abuse your system

- With REST you count requests in a window 
- Count max nodes in a query, limit it within window

http://graphql-ruby.org/queries/complexity_and_depth

• N+1 Queries
• Static Analysis
• Timeout
• Instrumentation

- some things we didn’t talk about but I wish we had time for

http://graphql.org

http://graphql-ruby.org

@rmosolgo

- I work from home so please come talk to me about GraphQL

http://graphql.org
http://graphql-ruby.org

